Project ID: ANIM024

Exploring the Role of *Frazzled* in *Drosophila* Neural Circuit Assembly and Foraging Behavior

(Unless otherwise noted, all images, photos, data tables and graphs were created or taken by finalist)

Introduction

Connectome

Drosophila^[3]

Drosophila mushroom body structure^[5]

Research Questions:

- 1. Which genes control the neurite targeting of PPL1- $\alpha'2\alpha^2$ neurons?
- 2. Does abnormal neurite targeting of PPL1-α'2α2 neurons influence food-seeking behavior?

Fig. 1 The *Drosophila* brain mushroom body(magenta) and PPL1- α '2 α 2 neuron(green) under confocal microscopy.

Methods

- 1. GAL4-UAS system was used to drive
- RNAi knockdown (e.g. *frazzled*, *octβ2r*)
- Gene overexpression: frazzled

2. Foraging assay

Starve fly for 48hrs and analyze food-seeking behavior

Fig. 2b Knockdown of genes in PPL1- α '2 α 2

density in $\alpha 2$ zone 6

Functions of *frazzled* gene

- Netrin receptor on neuron surface.
- Embryo commissural axons in ventral nerve cord.
- Differentiation, development, and maturation of visual system.

Hypothesis:

The α^2 and α^2 zones attract frazzled-expressing neurites.

Result-2 Overexpression of *frazzled* misguided MBON-α3 and **MBON-** $\beta 2\beta' 2a$ neurites towards the $\alpha 2$ and $\alpha' 2$ zones

Fig. 3a MBON-α3 neuron model^[5]

p<0.0001

80

60 ·

40 ·

20

control

FR3 OF

fra

MBON-α3 MB

Fig. 3b *Frazzled* overexpressed in MBON- α 3

Fig. 4a **MBON-**β2β'2a neuron model^[5]

MBON-β2β'2a MB Ž 20 µm

Fig. 4c Quantification of MBON-β2β'2a innervation length

Fig. 4b *Frazzled* overexpressed in MBON- $\beta \beta \beta' 2a$

Result-3 Overexpression of *frazzled* has no effect on PPL1- $\gamma 2\alpha' 1$ and MBON- $\alpha' 2$ neurite targeting

Fig. 5a **PPL1-γ2α'1** neuron model^[5]

PPL1-γ2α'1 MB

Fig. 6a MBON-α'2 neuron model ^[5]

MBON-α'2 MB

Ž

В

fra

Ž

fra OE

20 μm

20 µm

Fig. 5b *Frazzled* overexpressed in PPL1- $\gamma 2\alpha' 1$

Fig. 6b *Frazzled* overexpressed in MBON- α '2

Result-4

Loss innervation of PPL1- α '2 α 2 into α '2 and α 2 zones under *frazzled* knockdown does not affect food-seeking behavior

Previous studies show that silencing neurotransmission in PPL1-α'2α2 neurons disrupts foraging behavior^[6]

1.5-

Fig. 7 The food attraction index is not significantly different between groups

Representative single-fly food-seeking trajectory

Conclusions

- **1.** *Frazzled* expression is required cell-autonomously for the neurite targeting of PPL1- α '2 α 2 neuron.
- 2. Overexpression of *frazzled* in some MB neurons is sufficient to **redirect their neurites** towards α^2 and α^2 zones.
- 3. The genetic effect of *frazzled* on neurite targeting might be **context-dependent** in *Drosophila* brain.
- 4. Loss innervation of PPL1- α '2 α 2 into α '2 and α 2 zones under *frazzled* knockdown does not affect food-seeking behavior, suggesting that **developmental plasticity** may compensate for the miswiring of PPL1- α '2 α 2 neurons.

Future work:

- 1. Investigate the role of Frazzled-Netrin pathway in PPL1- α '2 α 2 neurite targeting.
- 2. Explore the compensatory mechanism for neural circuit miswiring.

References

 V.J. Wedeen and L.L. Wald, Martinos, Center for Biomedical Imaging (https://www.discovermagazine.com/mind/36-new-project-maps-the-wiring-of-the-mind)
Janelia Research Campus, MouseLight project team (https://www.eurekalert.org/multimedia/pub/154461.php?from=375126)
LK Scheffer, et al. (2020). A connectome and analysis of the adult *Drosophila* brain. *eLife*, 9:e57443.
Hakim, Y., Yaniv, S. P., & Schuldiner, O. (2014). Astrocytes play a key role in Drosophila mushroom body axon pruning. *PLoS One*, *9*(1), e86178.
Aso, Y., Hattori, D., Yu, Y., Johnston, R. M., Iyer, N. A., Ngo, T. T. & Rubin, G. M. (2014). The neuronal architecture of the mushroom body provides a logic for associative learning. *Elife*, *3*, e04577.
Tsao, C. H., Chen, C. C., Lin, C. H., Yang, H. Y., & Lin, S. (2018). Drosophila mushroom bodies integrate hunger and satiety signals to control innate food-seeking behavior. *Elife*, *7*, e35264.