# Enumeration of polygon dissections with prescribed conditions

(Unless otherwise noted, all images, figures, data tables and graphs were created by finalist.)

# Introduction

#### **Motivation: Triangulations**



### Our problem and goal:

- How many ways to dissect a convex polygon into a given set of prescribed polygons?
- In this project, we completely solve the problem. (Main Theorem in Conclusion)

# Notation

- Let  $a_n(k_1^{p_1}, k_2^{p_2}, ..., k_t^{p_t}, 1^*)$  be the number of ways to dissect an (n + 2)-gon into  $p_i$  copies of  $(k_i + 2)$ -gons (i = 1, 2, ..., t) and  $n \sum_{i=1}^{t} k_i p_i$  triangles, where  $k_i \ge 2$  and  $n \sum_{i=1}^{t} k_i p_i \ge 0$ .
- Examples:



Fig. 2:  $a_7(2^2, 3, 1^0) = 45 \rightarrow \text{Dissect a 9-gon into 2 quadrilaterals, 1 pentagon, 0 triangle.}$ 



Fig. 3:  $a_{10}(2,3,1^5) = 74256 \rightarrow \text{Dissect a 12-gon into 1 quadrilateral, 1 pentagon, 5 triangles.}$ 

## Generating function

- In order to count  $a_n(k_1, k_2, ..., k_t, 1^*)$ , we investigate its generating function  $f_{(k_1, k_2, ..., k_t)}(x) = \sum_{n=0}^{\infty} a_n(k_1, k_2, ..., k_t, 1^*) x^n$ .
- For convenience, we denote [x<sup>n</sup>]g(x) is the coefficient of x<sup>n</sup> of a generating function g(x).

#### Generating function for Catalan numbers

- From our definition,  $a_n(1^*) = c_n$ .
- Let  $C(x) = \sum_{n=0}^{\infty} \frac{1}{n+1} {\binom{2n}{n}} x^n$  be the generating function for the Catalan Numbers.

• Lemma 1: 
$$\frac{C(x)^{k+1} - C(x)^k}{x} = C(x)^{k+2}$$

• Lemma 2:

$$C(x)^{k} = \sum_{n=0}^{\infty} \frac{k}{n+k} \binom{2n+k-1}{n} x^{n}$$

4

# Findings I: Dissections into distinct polygons



Fig. 4: An example for a dissection of k = 2

**Proposition 1** (Dissect into a single (k+2)-gon and triangles)

$$a_n(k,1^*) = \frac{n+2}{k+2} [x^{n-k}] C(x)^{k+2} = \binom{2n-k+1}{n+1}$$

- Every vertex on the (k + 2)-gon can be associated with a string, each of which has (k + 2) Catalan numbers in it.
- In addition, the same string may start from any of the (n + 2) vertices.
- Multiplying the Catalan Numbers in each string and adding them together becomes the coefficient of  $x^{n-k}$  in  $C(x)^{k+2}$ .
- By previous lemmas, we have  $f_k(x) = \sum_{n=0}^{\infty} a_n(k, 1^*) x^n = \frac{1}{x} \cdot \frac{d}{dx} \left( \frac{x^{k+2} C(x)^{k+2}}{k+2} \right).$



Fig. 5: An example for a dissection of  $k_1 = 2, k_2 = 3$ 

**Proposition 2** (Dissect into a single  $(k_1 + 2)$ -gon; a single  $(k_2 + 2)$ -gon; and triangles)

$$a_n(k_1, k_2, 1^*) = (n+2) \begin{pmatrix} 2n - k_1 - k_2 + 2 \\ n+2 \end{pmatrix}$$

- Let the  $(k_1 + 2)$ -gon be the main structure of the dissection.
- The other regions are  $(k_1 + 1)$  triangulation regions and a region composed of a  $(k_2 + 2)$ -gon and triangles, which can be calculated by  $f_k(x)$ .

• We have 
$$f_{(k_1,k_2)}(x) = \frac{1}{x} \cdot \frac{d}{dx} \Big( x^{k_1+2} f_{k_2}(x) C(x)^{k_1+1} \Big).$$

$$a_n(k_1,k_2,k_3,1^*)$$



Fig. 6: Gray polygons in different regions



Fig. 7 : Gray polygons in common region

**Proposition 3** (Dissect into a single  $(k_1 + 2)$ -gon; a single  $(k_2 + 2)$ -gon; a single  $(k_3 + 2)$ -gon; and triangles)

$$a_n(k_1, k_2, k_3, 1^*) = (n+2)(n+3) \begin{pmatrix} 2n-k_1-k_2-k_3+3\\ n+3 \end{pmatrix}$$

• The dissections should be classified according to the relative positions of the polygons when the (n + 2)-gon is dissected into three or more polygons and a few triangles.

• 
$$(n+2)\frac{(k_1+2)(k_1+1)}{k_1+2}[x^n]\left(x^{k_1}f_{k_2}(x)f_{k_3}(x)C(x)^{k_1}\right)$$
 (1)

• 
$$(n+2)[x^n](x^{k_1}f_{(k_2,k_3)}(x)C(x)^{k_1+1})$$
 (2)

• From (1) and (2), we have

$$f_{(k_1,k_2,k_3)}(x) = \frac{1}{x} \cdot \frac{d}{dx} \left\{ \begin{pmatrix} (k_1+1)x^{k_1}f_{k_2}(x)f_{k_3}(x)C(x)^{k_1} \\ +x^{k_1}f_{(k_2,k_3)}(x)C(x)^{k_1+1} \end{pmatrix} x^2 \right\}$$

• From the result above we have our key lemma.

### Idea: Shift

#### Key Lemma

The number of ways to dissect a given convex (n + 2)-gon into a collection of  $\{k_1 + 2, k_2 + 2, ..., k_t + 2\}$ -gons is the same as that to dissect into a collection of  $\{h_1 + 2, h_2 + 2, ..., h_t + 2\}$ -gons, if  $\sum_{i=1}^{t} k_i = \sum_{i=1}^{t} h_i$ . That is, when  $K = \sum_{i=1}^{t} k_i = \sum_{i=1}^{t} h_i$ ,  $a_n(k_1, ..., k_t, 1^*) = a_n(h_1, ..., h_t, 1^*)$ .



Fig.8: Shift of dissections

- Assign the unique region that is adjacent to the  $(k_i + 2)$ -gon and move it cross the common region between the  $(k_i + 2)$ -gon and the  $(k_i + 2)$ -gon.
- The (k<sub>i</sub>+2)-gon will be transformed into a (k<sub>i</sub>+1)-gon, and the (k<sub>j</sub>+2)-gon becomes a (k<sub>j</sub>+3)-gon.

8



- Transform polygons into "specific triangles" by shifting.
- The number of ways can be calculated by  $a_n(k,1^*)$  obtained previously.

$$\begin{split} a_n(k_1, k_2, \dots, k_t, 1^{n-K}) &= \frac{(n-K+t-1)!}{(n-K)!} \times a_n(K-t+1, 1^{n-K+t-1}) \\ &= \frac{(n+t)!}{(n+1)!} \binom{2n-K+t}{n+t} \end{split}$$

Key Proposition (Dissect into a collection of distinct polygons and triangles)

The number of way to dissect an (n + 2)-gon into  $(k_i + 2)$ -sides polygons

(i = 1, 2, ..., t) with distinct  $k_i$ 's, that is  $p_i = 1$  for all i, and n - K triangles is  $\frac{(n+t)!}{(n+1)!} \binom{2n-K+t}{n+t}$ , where  $\sum_{i=1}^{t} k_i p_i = K$ .

• This formula can be seen as a generalization of Catalan Numbers:

Number of different  
types of polygons012...tNumber of  
dissections
$$\frac{1}{n+1} {2n \choose n} {2n-k+1 \choose n+1} {(n+2) {2n-k_1-k_2+2 \choose n+2}} {\dots} {(n+2) {2n-k_1-k_2+2 \choose n+2}} {\dots}$$
 $\frac{(n+t)!}{(n+1)!} {2n-K+t \choose n+t}$ 

Table.1:  $a_n(k_1, k_2, ..., k_t)$ 

10

# Findings II: Repeated polygons

- Suppose we want to dissect into a collection having  $p_i$  copies of  $(k_i + 2)$ -gon,  $p_i \ge 2$ .
- We can fix any one of the  $p_i$  copies and treat the remaining as distinct ones.
- The counting method previously analyzed for distinct polygons can then be applied, but the result would be (p<sub>i</sub>!) times more than the actual number.



Fig. 10: An example for a dissection of  $k_1 = 2$ ,  $p_1 = 2$ ,  $k_2 = 3$ 

$$a_n(k_1^2, k_2, 1^*) = \frac{(n+2)(n+3)}{2!} \binom{2n-2k_1-k_2+3}{n+3}$$



Fig.11: An example for a dissection of  $k_1 = 2$ ,  $p_1 = 3$ 

$$a_n(k^3, 1^*) = \frac{(n+2)(n+3)}{3!} \binom{2n-3k+3}{n+3}$$

# Conclusion

• By the arguments above, we can solve the problem with **arbitrarily** prescribed conditions:

#### Main Theorem

The number of ways to dissect a convex (n + 2)-gon into  $p_i$  copies of  $(k_i + 2)$ -gons (i = 1, 2, ..., t), and n - K triangles, where  $K = \sum_{i=1}^{t} k_i p_i$ , is  $a_n(k_1^{p_1}, k_2^{p_2}, ..., k_t^{p_t}, 1^{n-K}) = \frac{1}{\prod_{i=1}^{t} (p_i !)} \frac{(n + \sum_{i=1}^{t} p_i)!}{(n+1)!} \binom{2n - K + \sum_{i=1}^{t} p_i}{n + \sum_{i=1}^{t} p_i}.$ 

## References

- [1] **Davis,T.** (2016). *Catalan Numbers*. Retrieved from http://www.geometer.org/mathcircles/, 2-12.
- [2] Stanley, R.P. (2015). Catalan numbers. London: Cambridge University Press.
- [3] Tucker, A. (2012). Applied combinatorics. NY: John Wiley & Sons Inc, 308-315.
- [4] Wilf,H. (1994). *Generatingfunctionology*. Retrieved from https://www2.math.upenn.edu/~wilf/gfology2.pdf, 3-72.