Enumeration of polygon dissections

with prescribed conditions

Introduction

Motivation: Triangulations

Fig.1: Triangulations

- Catalan Numbers: $c_{n}=\frac{1}{n+1}\binom{2 n}{n}, n=0,1,2,3, \ldots$

Our problem and goal:

- How many ways to dissect a convex polygon into a given set of prescribed polygons?
- In this project, we completely solve the problem. (Main Theorem in Conclusion)

Notation

- Let $a_{n}\left(k_{1}^{p_{1}},{k_{2}}^{p_{2}}, \ldots, k_{t}^{p_{t}}, 1^{*}\right)$ be the number of ways to dissect an $(n+2)$-gon into p_{i} copies of $\left(k_{i}+2\right)$-gons $(i=1,2, \ldots, t)$ and $n-\sum_{i=1}^{t} k_{i} p_{i}$ triangles, where $k_{i} \geq 2$ and $n-\sum_{i=1}^{t} k_{i} p_{i} \geq 0$.
- Examples:

Fig. 2: $a_{7}\left(2^{2}, 3,1^{0}\right)=45 \rightarrow$ Dissect a 9-gon into 2 quadrilaterals, 1 pentagon, 0 triangle.

Fig. 3: $a_{10}\left(2,3,1^{5}\right)=74256 \rightarrow$ Dissect a 12-gon into 1 quadrilateral, 1 pentagon, 5 triangles.

Generating function

- In order to count $a_{n}\left(k_{1}, k_{2}, \ldots, k_{t}, 1^{*}\right)$, we investigate its generating function $f_{\left(k_{1}, k_{2}, \ldots, k_{t}\right)}(x)=\sum_{n=0}^{\infty} a_{n}\left(k_{1}, k_{2}, \ldots, k_{t}, 1^{*}\right) x^{n}$.
- For convenience, we denote $\left[x^{n}\right] g(x)$ is the coefficient of x^{n} of a generating function $g(x)$.

Generating function for Catalan numbers

- From our definition, $a_{n}\left(1^{*}\right)=c_{n}$.
- Let $C(x)=\sum_{n=0}^{\infty} \frac{1}{n+1}\binom{2 n}{n} x^{n}$ be the generating function for the Catalan Numbers.
- Lemma 1:

$$
\frac{C(x)^{k+1}-C(x)^{k}}{x}=C(x)^{k+2}
$$

- Lemma 2:

$$
C(x)^{k}=\sum_{n=0}^{\infty} \frac{k}{n+k}\binom{2 n+k-1}{n} x^{n}
$$

Findings I : Dissections into distinct polygons

$$
a_{n}\left(k, 1^{*}\right)
$$

Fig. 4: An example for a dissection of $k=2$

- Every vertex on the $(k+2)$-gon can be associated with a string, each of which has $(k+2)$ Catalan numbers in it.
- In addition, the same string may start from any of the $(n+2)$ vertices.
- Multiplying the Catalan Numbers in each string and adding them together becomes the coefficient of x^{n-k} in $C(x)^{k+2}$.
- By previous lemmas, we have $f_{k}(x)=\sum_{n=0}^{\infty} a_{n}\left(k, 1^{*}\right) x^{n}=\frac{1}{x} \cdot \frac{d}{d x}\left(\frac{x^{k+2} C(x)^{k+2}}{k+2}\right)$.
$a_{n}\left(k_{1}, k_{2}, 1^{*}\right)$

Fig. 5: An example for a dissection of $k_{1}=2, k_{2}=3$

Proposition 2 (Dissect into a single

($k_{1}+2$)-gon; a single ($k_{2}+2$)-gon; and

 triangles)$$
a_{n}\left(k_{1}, k_{2}, 1^{*}\right)=(n+2)\binom{2 n-k_{1}-k_{2}+2}{n+2}
$$

- Let the $\left(k_{1}+2\right)$-gon be the main structure of the dissection.
- The other regions are $\left(k_{1}+1\right)$ triangulation regions and a region composed of a $\left(k_{2}+2\right)$-gon and triangles, which can be calculated by $f_{k}(x)$.
- We have $f_{\left(k_{1}, k_{2}\right)}(x)=\frac{1}{x} \cdot \frac{d}{d x}\left(x^{k_{1}+2} f_{k_{2}}(x) C(x)^{k_{1}+1}\right)$.

Proposition 3 (Dissect into a single ($k_{1}+2$)-gon;

 a single ($k_{2}+2$)-gon; a single ($k_{3}+2$)-gon; and triangles)(1)

Fig. 6: Gray polygons in different regions
(2)

Fig. 7 : Gray polygons in common region

$$
a_{n}\left(k_{1}, k_{2}, k_{3}, 1^{*}\right)=(n+2)(n+3)\binom{2 n-k_{1}-k_{2}-k_{3}+3}{n+3}
$$

- The dissections should be classified according to the relative positions of the polygons when the $(n+2)$-gon is dissected into three or more polygons and a few triangles.
- $(n+2) \frac{\left(k_{1}+2\right)\left(k_{1}+1\right)}{k_{1}+2}\left[x^{n}\right]\left(x^{k_{1}} f_{k_{2}}(x) f_{k_{3}}(x) C(x)^{k_{1}}\right)$
- $(n+2)\left[x^{n}\right]\left(x^{k_{1}} f_{\left(k_{2}, k_{3}\right)}(x) C(x)^{k_{1}+1}\right)$
- From (1) and (2), we have

$$
f_{\left(k_{1}, k_{2}, k_{3}\right)}(x)=\frac{1}{x} \cdot \frac{d}{d x}\left\{\left\{\begin{array}{l}
\left(k_{1}+1\right) x^{k_{1}} f_{k_{2}}(x) f_{k_{3}}(x) C(x)^{k_{1}} \\
+x^{k_{1}} f_{\left(k_{2}, k_{3}\right)}(x) C(x)^{k_{1}+1}
\end{array}\right) x^{2}\right\}
$$

- From the result above we have our key lemma.

Idea: Shift

Key Lemma

The number of ways to dissect a given convex ($n+2$)-gon into a collection of $\left\{k_{1}+2, k_{2}+2, \ldots, k_{\mathrm{t}}+2\right\}$-gons is the same as that to dissect into a collection of $\left\{h_{1}+2, h_{2}+2, \ldots, h_{\mathrm{t}}+2\right\}$-gons, if $\sum_{i=1}^{\dot{c}} k_{i}=\sum_{i=1}^{\dot{c}} h_{i}$. That is, when $K=\sum_{i=1}^{\dot{c}} k_{i}=\sum_{i=1}^{\dot{c}} h_{i}$,

$$
a_{n}\left(k_{1}, \ldots, k_{t}, 1^{*}\right)=a_{n}\left(h_{1}, \ldots, h_{t}, 1^{*}\right) .
$$

Fig.8: Shift of dissections

- Assign the unique region that is adjacent to the $\left(k_{i}+2\right)$-gon and move it cross the common region between the $\left(k_{i}+2\right)$-gon and the $\left(k_{j}+2\right)$-gon.
- The $\left(k_{i}+2\right)$-gon will be transformed into a $\left(k_{i}+1\right)$-gon, and the $\left(k_{j}+2\right)$-gon becomes a $\left(k_{j}+3\right)$-gon.

Specific triangles

Fig. 9: An examples of the correspondence

- Transform polygons into "specific triangles" by shifting.
- The number of ways can be calculated by $a_{n}\left(k, 1^{*}\right)$ obtained previously.

$$
\begin{aligned}
a_{n}\left(k_{1}, k_{2}, \ldots, k_{t}, 1^{n-K}\right) & =\frac{(n-K+t-1)!}{(n-K)!} \times a_{n}\left(K-t+1,1^{n-K+t-1}\right) \\
& =\frac{(n+t)!\left(\begin{array}{c}
2 n-K+t \\
(n+1)! \\
n+t
\end{array}\right)}{}
\end{aligned}
$$

Key Proposition (Dissect into a collection of distinct polygons and triangles)

The number of way to dissect an $(n+2)$-gon into $\left(k_{i}+2\right)$-sides polygons ($i=1,2, \ldots, t$) with distinct k_{i} 's , that is $p_{i}=1$ for all i, and $n-K$ triangles is $\frac{(n+t)!}{(n+1)!}\binom{2 n-K+t}{n+t}$, where $\sum_{i=1}^{t} k_{i} p_{i}=K$.

- This formula can be seen as a generalization of Catalan Numbers:

Number of different types of polygons	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\boldsymbol{\cdots}$	\boldsymbol{t}		
Number of dissections	$\frac{1}{n+1}\binom{2 n}{n}$					$\binom{2 n-k+1}{n+1}(n+2)\binom{2 n-k_{1}-k_{2}+2}{n+2}, \ldots$	$(n+t)!\left(\begin{array}{c}2 n-K+t \\ n+1)! \\ n+t\end{array}\right)$
:---:							

Table.1: $a_{n}\left(k_{1}, k_{2}, \ldots, k_{t}\right)$

Findings II: Repeated polygons

- Suppose we want to dissect into a collection having p_{i} copies of $\left(k_{i}+2\right)$-gon, $p_{i} \geq 2$.
- We can fix any one of the p_{i} copies and treat the remaining as distinct ones.
- The counting method previously analyzed for distinct polygons can then be applied, but the result would be ($p_{i}!$) times more than the actual number.

Fig. 10: An example for a dissection

$$
\text { of } k_{1}=2, p_{1}=2, k_{2}=3
$$

$a_{n}\left(k_{1}^{2}, k_{2}, 1^{*}\right)=\frac{(n+2)(n+3)}{2!}\binom{2 n-2 k_{1}-k_{2}+3}{n+3}$

Fig.11: An example for a dissection of $k_{1}=2, p_{1}=3$

$$
a_{n}\left(k^{3}, 1^{*}\right)=\frac{(n+2)(n+3)}{3!}\binom{2 n-3 k+3}{n+3}
$$

Conclusion

- By the arguments above, we can solve the problem with arbitrarily prescribed conditions:

Main Theorem

The number of ways to dissect a convex $(n+2)$-gon into p_{i} copies of $\left(k_{i}+2\right)$-gons $(i=1,2, \ldots, t)$, and $n-K$ triangles, where $K=\sum_{i=1}^{t} k_{i} p_{i}$, is

$$
a_{n}\left(k_{1}^{p_{1}}, k_{2}^{p_{2}}, \ldots, k_{t}^{p_{t}}, 1^{n-K}\right)=\frac{1}{\prod_{i=1}^{t}\left(p_{i}!\right)} \frac{\left(n+\sum_{i=1}^{t} p_{i}\right)!}{(n+1)!}\binom{2 n-K+\sum_{i=1}^{t} p_{i}}{n+\sum_{i=1}^{t} p_{i}} .
$$

References

[1]Davis,T. (2016). Catalan Numbers. Retrieved from http://www.geometer.org/mathcircles/, 2-12.
[2]Stanley,R.P. (2015). Catalan numbers. London: Cambridge University Press.
[3] Tucker,A. (2012). Applied combinatorics. NY: John Wiley \& Sons Inc,308-315.
[4] Wilf,H. (1994) . Generatingfunctionology. Retrieved from https://www2.math.upenn.edu/~wilf/gfology2.pdf, 3-72.

