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• How many ways to dissect a convex polygon into a given set of 

prescribed polygons?

• In this project, we completely solve the problem. (Main Theorem in 

Conclusion)

Introduction 

Motivation: Triangulations

Our problem and goal: 

c0 = 1

• Catalan Numbers: , n = 0, 1, 2, 3, …
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c1 = 1 c2 = 2 c3 = 5 c4 = 14

Fig.1: Triangulations 



Let be the number of ways to dissect an (n + 2)-gon

into  pi copies of (ki + 2)-gons and                  triangles, where 

and .
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Notation

Examples:•
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0( , ,1 ) 52 3 =4a Fig. 2: Dissect a 9-gon into 2 quadrilaterals, 1 pentagon, 0 triangle.
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10 ( , ,13 52 ) 742 6a  Fig. 3: Dissect a 12-gon into 1 quadrilateral, 1 pentagon, 5 triangles.
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• From our definition, an(1
*) = cn.

• Let be the generating function for the Catalan 

Numbers.

• Lemma 1:

• Lemma 2:
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Generating function for Catalan numbers
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Generating function

In order to count , we investigate its generating function

.

For convenience, we denote is the coefficient of xn of a 

generating function g(x).
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Fig. 4: An example for a dissection of  k = 2

Findings I : Dissections into distinct polygons
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• Every vertex on the (k + 2)-gon can be 
associated with a string, each of which has 
(k + 2) Catalan numbers in it. 

• In addition, the same string may start from 
any of the (n + 2) vertices.

• Multiplying the Catalan Numbers in each 
string and adding them together becomes 
the coefficient of xn-k in C(x)k+2.

• By previous lemmas, we have
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Proposition 1 (Dissect into a single (k + 2)-gon

and triangles)
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• Let the (k1 + 2)-gon be the main structure of the 
dissection.

• The other regions are (k1 + 1) triangulation regions 
and a region composed of a (k2 + 2)-gon and 
triangles, which can be calculated by fk (x).

• We have . 
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Fig. 5: An example for a dissection 

of k1 = 2, k2 = 3
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Proposition 2 (Dissect into a single 

(k1 + 2)-gon; a single (k2 + 2)-gon; and 

triangles)



• The dissections should be classified according 
to the relative positions of the polygons when 
the (n + 2)-gon is dissected into three or more 
polygons and a few triangles.

•

•

• From (1) and (2), we have 

• From the result above we have our key lemma.
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Fig. 6: Gray polygons in different regions

Fig. 7 : Gray polygons in common region
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Proposition 3 (Dissect into a single (k1 + 2)-gon; 

a single (k2 + 2)-gon; a single (k3 + 2)-gon; and 

triangles)
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Idea: Shift

Fig.8: Shift of dissections 
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• Assign the unique region that is adjacent to the (ki + 2)-gon and move it 
cross the common region between the (ki + 2)-gon and the (kj + 2)-gon.

• The (ki + 2)-gon will be transformed into a (ki + 1)-gon, and the (kj + 2)-gon
becomes a (kj + 3)-gon. 

The number of ways to dissect a given convex (n + 2)-gon into a collection of 

{k1 + 2, k2 + 2, …, kt + 2}-gons is the same as that to dissect into a collection of 

{h1 + 2, h2 + 2, …, ht + 2}-gons, if . That is, when                         ,
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Specific triangles
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Fig. 9: An examples of the correspondence 
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• Transform polygons into “specific triangles” by shifting. 

• The number of ways can be calculated by an(k,1*) obtained previously.
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Number of different 

types of polygons

Number of

dissections
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Table.1: an(k1, k2, … , kt)

The number of way to dissect an (n + 2)-gon into (ki + 2)-sides polygons 

(i = 1, 2,…, t ) with distinct ki ’s , that is pi = 1 for all i, and n – K triangles 

is , where .  
2( )!

( 1)!

n K tn t

n tn

  
 

   1

t

i i

i

k p K




Key Proposition (Dissect into a collection of distinct polygons and triangles)

• This formula can be seen as a generalization of Catalan Numbers: 



Findings II: Repeated polygons
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Fig. 10: An example for a dissection

of k1 = 2, p1 = 2, k2 = 3 

Fig.11: An example for a dissection

of k1 = 2, p1 = 3 
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• Suppose we want to dissect into a collection having  pi copies of  (ki + 2)-gon, pi      2.

• We can fix any one of the  pi copies and treat the remaining as distinct ones.

• The counting method previously analyzed for distinct polygons can then be applied, 
but the result would be (pi!) times more than the actual number.





The number of ways to dissect a convex (n + 2)-gon into pi copies of 

(ki + 2)-gons (i = 1, 2,…, t ), and n – K triangles, where , is
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Main Theorem

Conclusion  
• By the arguments above, we can solve the problem with arbitrarily prescribed conditions:


