#### Project ID: ROBO022

# Non-invasive Autonomous Anemia Screening Using Conjunctival Images

#### Introduction

- Anemia affects about 25% of the world population.
- Standard practice for diagnosis of anemia requires blood analysis.
- Pre-screening for possible anemia remains a challenging task.



#### Table 1: Comparison of previous researches

| Study                  | Sample size | Procedure             | Tool          | Accuracy | False Negative |
|------------------------|-------------|-----------------------|---------------|----------|----------------|
| Strobach et al. (1988) | 50          | (Physician eye check) |               | 66.0%    | 60.7%          |
| Collings et al. (2016) | 101         | Manual                | Color palette | 72.3%    | 43.5%          |
| Tamir et al. (2017)    | 19          | Manual                | Fixed frame   | 78.9%    | -              |
| Park et al. (2020)     | 153         | Manual                | -             | -        | -              |



Fig. 1: Extraction of conjunctiva images were done manually. [1][4][7]

• **Objective:** Develop a non-invasive, autonomous and robust method for pre-screening of anemia from eye photos

#### Background

- WHO definition of anemia hemoglobin level
  - Female: less than 12.0 g/dl
  - Male: less than 13.0 g/dl
- Paleness of palpebral conjunctiva is commonly used for pre-screening of anemia.



Fig. 2: Palpebral conjunctiva



Fig. 3: Examples of palpebral conjunctiva image of anemia and non-anemia cases

### **Conjunctival Image Collection**

- 55 subjects with 10 palpebral conjunctival images from each subject
  - blood analysis within three months before images were taken



Fig. 5: Hemoglobin level of all 55 subjects

### **Extraction of Palpebral Conjunctiva**

- Use TernausNet for palpebral conjunctiva extraction
  - UNet model with VGG11 encoder feature
  - Convolutional layers (filter size=3; stride=1, 2; padding=1)
  - Max pooling (size=2)



**Palpebral Conjunctiva** 

Extraction

**EPC Classification** 

## **Palpebral Conjunctiva Extraction Result**









Fig. 8: IoU distribution of all EPCs



Fig. 9: Examples of palpebral conjunctiva extraction result

### **Feature for EPC Classification**

- Use HSV color space
  - Hue indicates dominant color
  - Saturation indicates brilliance and intensity of Hue
- Equally divide the distribution profile into 10 bins
- Define 10 tuple feature as  $< hs_1, hs_2, \dots, hs_{10} >$





- Saturation distribution centered around 125
- Feature vector < hs<sub>1</sub>, hs<sub>2</sub>,
  ..., hs<sub>10</sub> > has saturation
  values between 75 and 175

 Saturation distribution centered around 175

Feature vector < hs<sub>1</sub>, hs<sub>2</sub>,
 ..., hs<sub>10</sub> > has saturation
 values between 100 and 250

Fig. 11: 10-tuple vector computed from the HSV distribution

### **Supervised Classification**

- k-Nearest Neighbors (k-NN) vs. Support Vector Machine (SVM)
  - k-NN with k ∈  $\{3, 5, ..., \sqrt{n}\}$
  - SVM with C ∈ {0.001, 0.01, 0.1, 1, 10, 100}, gamma ∈ {0.0001, 0.001, 0.01, 0.1, 1},
  - Kernel functions: RBF, linear, polynomial, sigmoid



Best Result:

- 3-NN: Accuracy=0.735, FN=0.300, FP=0.227
- SVM(RBF, C=10, gamma=0.0001): Accuracy=0.755, FN=0.228, FP=0.265

**Palpebral Conjunctiva** 

Extraction

**EPC Classification** 

Anemia Screening

#### **Anemia Screening Criteria**

#### Screening Criteria:

Single Image 1 Eye (SI1E)  $P(i) \mid \exists i \in (I_L + I_R)$ 

**Majority Rule 1 Eye (MR1E)**  $\Sigma P(i) \ge 3 \mid i \in I_L \text{ or } \Sigma P(i) \ge 3 \mid i \in I_R$ 

#### **Majority Rule Image Set (MRIS)** $\Sigma P(i) > 5 \mid \forall i \in (I_L + I_R)$



**Majority Rule 2 Eye (MR2E)**  $\Sigma P(i) \ge 3 \mid i \in I_L \text{ and } \Sigma P(i) \ge 3 \mid i \in I_R$ 





Fig. 13: Examples of applying screening criterion to classified EPCs

Fig. 14: Screening accuracies

#### **Anemia Screening Results**



Two FN cases (Fig. 16) both have EPC with high IoU, but EPC mostly classified as non-anemia.



Fig. 16: Two subjects with false negative anemia screening result

#### Conclusions

- This research proposed an efficient conjunctiva based anemia screening method.
- The proposed method has anemia screening accuracy that is 10%~20% better than earlier researches, and with much lower false positive and false negative rates.
  - An anemia screening sensor can be made based on this research for use at clinics or at home.
    - To lower the false positives diagnosis and to prevent wasting medical resources
    - To facilitate early detection and early treatment before symptoms deteriorate



Use k-NN for EPC classification

Use MRIS for final anemia screening

Accuracy = 0.891 False Negative = 0.077 False Positive = 0.138

#### References

- [1] Collings, S., et al. Non-invasive detection of anaemia using digital photographs of the conjunctiva. *PLoS One.* **2016**;11:e0153286.
- [2] Iglovikov, V., et al. TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation. **2018**.
- [3] Mazzu, T., et al. Mobile health (mHealth) and advances in noninvasive diagnosis of anemia: an overview. *Intern J Nutrol.* **2020**;13:42-47.
- [4] Park, S.M., et al. mHealth spectroscopy of blood hemoglobin with spectral superresolution. *Optica*. **2020**;7:563-573.
- [5] Sheth, T.N., et al. The relation of conjunctival pallor to the presence of anemia. *J Gen Intern Med.* **1997**;12:102-106.
- [6] Strobach, R.S., et al. The value of the physical examination in the diagnosis of anemia correlation of the physical findings and the hemoglobin concentration. *Arch Intern Med.* **1988**;148:831-832.
- [7] Tamir, A. et al. Detection of anemia from image of the anterior conjunctiva of the eye by image processing and thresholding. **2017** *IEEE Region 10 Humanitarian Technology Conference*; 697-701.